Nuclear power is the most efficient, safest and most environment friendly source of energy.


This blog compiles facts that make nuclear energy the clear choice for powering our future.

I have NO connection with the nuclear power industry and I have never had any connection with the nuclear power industry.

I have created this blog because I believe we are in dire need of drastically reducing our carbon emissions. Coal fired power plants are the single largest producer of CO2. Nuclear power is the most efficient, safest and most environmentally friendly source of energy available.

Coal Is Bad

Alex Gabbard makes it clear in this ORNL article. Coal fired power plants are a bigger danger to your health and the future of our planet than nuclear power plants. Coal fired power plants release more radiation and more CO2 into the atmosphere than a nuclear power plant. Yet 52% of our energy comes form coal fired power plants, while only 15% is created by nuclear energy.

The Oak Ridge National Laboratory is the Department of Energy’s largest science and energy laboratory.


  • "Power to Save the World; The Truth About Nuclear Energy" by Gwyneth Cravens, 2007 Finally a truthful book about nuclear power. This book is very easy to read and understand.
  • ENVIRONMENTALISTS FOR NUCLEAR ENERGY book: Fossil fuels such as coal oil, and gas, massively pollute the Earth's atmosphere (CO, CO2, SOX, NOX...), provoking acid rains and changeing the global climate by increasing the greenhouse effect, while nuclear energy does not participate in these pollutions and presents well-founded environmental benefits. Renewable energies (solar, wind) not being able to deliver the amount of energy required by populations in developing and developed countries, nuclear energy is in fact the only clean and safe energy available to protect the planet during the XXI st century. This book answers essential questions about nuclear safety, the Chernobyl accident, the public health problems our society has to face, viable solutions for nuclear waste, the benefits of clean nuclear energy for the environment, and important information about the future of our planet. Back cover - Table of contents - Introduction by James Lovelock - Review of this book by the American Health Physics Society   Book Review   Environmentalists for Nuclear Energy, by B. Comby English edition, 2001, 345 pp. (soft cover), 38 Euros TNR Editions, 266 avenue Daumesnil, 75012 Paris, France; ISBN 2-914190-02-6
  • "The Long Summer" by Brian Fagan
  • "Collapse" by Jared Diamond

Mass Extinction

The largest mass extinction of life occurred 251 million years ago when the atmospheric carbon levels rose to near 1000 parts per million, the ocean became anoxic (lacking oxygen). This allowed hydrogen sulfide gas to bubbled up from the bottom of the ocean and 95% of all life on earth died.

Sunday, July 19, 2009

The Great Dying

Rotten Sulfur Brew, The Great Dying?

While most scientists agree that a meteor strike killed the dinosaurs, the cause of the largest mass extinction in Earth's history, 251 million years ago, is still unknown, according to geologists. This event is one of the most catastrophic in

life's history: the P/T extinction (or the Permian/Triassic boundary).

"During the end-Permian (P/T) extinction 95 percent of all species on Earth became extinct, compared to only 75 percent during [the better-known Cretaceous-Tertiary (K/T) extinction], when the dinosaurs disappeared [65 million years ago]," says Dr. Lee R. Kump, Penn State Professor of Geosciences. "The end-Permian is puzzling. There is no convincing smoking gun, no compelling evidence of an asteroid impact."

Scientists have suggested many possible causes for this "Great Dying": severe volcanism, a nearby supernova, environmental changes wrought by the formation of a super-continent, the devastating impact of a large asteroid -- or some

combination of these. Whatever happened during this period left no form of life undisturbed: No class or species was spared from devastation. Trees, plants, lizards, proto-mammals, insects, fish, mollusks, and microbes -- all were nearly

wiped out. More than 9 in 10 marine species and 7 in 10 land species vanished. Life on our planet almost came to an end.

Researchers have shown that the deep oceans were anoxic, lacking oxygen, in the late Permian and research shows that the continental shelf areas in the end-Permian were also anoxic. One explanation is that sea level rose so that the anoxic deep water was covering the shelf. Another possibility is that the surface ocean and deep ocean mixed, bringing anoxic waters to the surface. Decomposition of organisms in the deep ocean could have caused an overabundance of carbon dioxide, which is lethal to many oceanic organisms and land-based animals.

"However, we find mass extinction on land to be an unlikely consequence of carbon dioxide levels of only seven times the preindustrial level," Kump told attendees at the annual meeting of the Geological Society of America in Seattle. "Plants, in general, love carbon dioxide, so it is difficult to think of carbon dioxide as a good kill mechanism."

On the other hand, hydrogen sulfide gas, produced in the oceans through sulfate decomposition by sulfur bacteria, can easily kill both terrestrial and oceanic plants and animals.

Humans can smell hydrogen sulfide gas, the smell of rotten cabbage, in the parts per trillion range. In the deeps of the Black Sea today, hydrogen sulfide exists at about 34 part per million. This is a toxic brew in which any aerobic, oxygen-needing, organism would die. For the Black Sea, the hydrogen sulfide stays in the depths because our rich oxygen atmosphere mixes in the top layer of water and controls the diffusion of hydrogen sulfide upwards. In the end-Permian, as the levels of atmospheric oxygen fell and the levels of hydrogen sulfide and carbon dioxide rose, the upper levels of the oceans could have become rich in hydrogen sulfide catastrophically. This would kill most of the oceanic plants and animals. The hydrogen sulfide dispersing in the atmosphere would kill most terrestrial life.So, what of the 5 percent of the species on Earth that survived?Kump suggests that the mixing of the deep ocean layers and the upper layer was not uniform and that refugia, places where oxygen still existed, remained, both in the oceans and on land.

What's Next

Kump and colleagues, Alexander Pavlov, University of Colorado; Michael Arthur, professor of geosciences, Penn State; Anthony Riccardi, graduate student, Penn State; and Yashuhiro Kato, University of Tokyo, are looking at sediments from the end-Permian found in Japan. "We are looking for biomarkers, indications of photosynthetic sulfur bacteria," says Kump. "These photo autotrophic organisms live in places where there is no oxygen, but still some sunlight. They would have been in their hay day in the end-Permian." Finding biomarkers of green sulfur bacteria would provide evidence for hydrogen sulfide as the cause of the mass extinctions. Studying biological catastrophes like the P/T extinction can help astrobiologists understand the close connection between life, geology, chemistry - and how such events may disrupt this sometimes delicate relationship.

Based on a Penn State report

No comments:

Post a Comment